3.252 \(\int (b \cos (c+d x))^{3/2} (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^4(c+d x) \, dx\)

Optimal. Leaf size=145 \[ \frac{2 b^2 (A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d \sqrt{b \cos (c+d x)}}+\frac{2 A b^3 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{2 b^2 B \sin (c+d x)}{d \sqrt{b \cos (c+d x)}}-\frac{2 b B E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \cos (c+d x)}}{d \sqrt{\cos (c+d x)}} \]

[Out]

(-2*b*B*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]) + (2*b^2*(A + 3*C)*Sqrt[Cos[c +
 d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*A*b^3*Sin[c + d*x])/(3*d*(b*Cos[c + d*x])^(3
/2)) + (2*b^2*B*Sin[c + d*x])/(d*Sqrt[b*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.211059, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 41, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.195, Rules used = {16, 3021, 2748, 2636, 2640, 2639, 2642, 2641} \[ \frac{2 b^2 (A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d \sqrt{b \cos (c+d x)}}+\frac{2 A b^3 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{2 b^2 B \sin (c+d x)}{d \sqrt{b \cos (c+d x)}}-\frac{2 b B E\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \sqrt{b \cos (c+d x)}}{d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

(-2*b*B*Sqrt[b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]) + (2*b^2*(A + 3*C)*Sqrt[Cos[c +
 d*x]]*EllipticF[(c + d*x)/2, 2])/(3*d*Sqrt[b*Cos[c + d*x]]) + (2*A*b^3*Sin[c + d*x])/(3*d*(b*Cos[c + d*x])^(3
/2)) + (2*b^2*B*Sin[c + d*x])/(d*Sqrt[b*Cos[c + d*x]])

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int (b \cos (c+d x))^{3/2} \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx &=b^4 \int \frac{A+B \cos (c+d x)+C \cos ^2(c+d x)}{(b \cos (c+d x))^{5/2}} \, dx\\ &=\frac{2 A b^3 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{1}{3} (2 b) \int \frac{\frac{3 b^2 B}{2}+\frac{1}{2} b^2 (A+3 C) \cos (c+d x)}{(b \cos (c+d x))^{3/2}} \, dx\\ &=\frac{2 A b^3 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\left (b^3 B\right ) \int \frac{1}{(b \cos (c+d x))^{3/2}} \, dx+\frac{1}{3} \left (b^2 (A+3 C)\right ) \int \frac{1}{\sqrt{b \cos (c+d x)}} \, dx\\ &=\frac{2 A b^3 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{2 b^2 B \sin (c+d x)}{d \sqrt{b \cos (c+d x)}}-(b B) \int \sqrt{b \cos (c+d x)} \, dx+\frac{\left (b^2 (A+3 C) \sqrt{\cos (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 \sqrt{b \cos (c+d x)}}\\ &=\frac{2 b^2 (A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d \sqrt{b \cos (c+d x)}}+\frac{2 A b^3 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{2 b^2 B \sin (c+d x)}{d \sqrt{b \cos (c+d x)}}-\frac{\left (b B \sqrt{b \cos (c+d x)}\right ) \int \sqrt{\cos (c+d x)} \, dx}{\sqrt{\cos (c+d x)}}\\ &=-\frac{2 b B \sqrt{b \cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d \sqrt{\cos (c+d x)}}+\frac{2 b^2 (A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 d \sqrt{b \cos (c+d x)}}+\frac{2 A b^3 \sin (c+d x)}{3 d (b \cos (c+d x))^{3/2}}+\frac{2 b^2 B \sin (c+d x)}{d \sqrt{b \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.295315, size = 92, normalized size = 0.63 \[ \frac{2 b^2 \left (\tan (c+d x) (A+3 B \cos (c+d x))+(A+3 C) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )-3 B \sqrt{\cos (c+d x)} E\left (\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{3 d \sqrt{b \cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(b*Cos[c + d*x])^(3/2)*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]

[Out]

(2*b^2*(-3*B*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + (A + 3*C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2
, 2] + (A + 3*B*Cos[c + d*x])*Tan[c + d*x]))/(3*d*Sqrt[b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B]  time = 8.06, size = 506, normalized size = 3.5 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x)

[Out]

2/3*(b*(2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*b/sin(1/2*d*x+1/2*c)^3/(4*sin(1/2*d*x+1/2*c)^4-4
*sin(1/2*d*x+1/2*c)^2+1)*(2*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*
x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2+6*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2*c)^2-12*B*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+6*C*(sin(
1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*sin(1/2*d*x+1/2
*c)^2-A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+2*
A*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2-3*B*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)+6*B*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*C*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*b*sin(1/2*d*x+1/2*c)^4+sin(1/2*
d*x+1/2*c)^2*b)^(1/2)/(b*(2*cos(1/2*d*x+1/2*c)^2-1))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac{3}{2}} \sec \left (d x + c\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)*sec(d*x + c)^4, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left ({\left (C b \cos \left (d x + c\right )^{3} + B b \cos \left (d x + c\right )^{2} + A b \cos \left (d x + c\right )\right )} \sqrt{b \cos \left (d x + c\right )} \sec \left (d x + c\right )^{4}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="fricas")

[Out]

integral((C*b*cos(d*x + c)^3 + B*b*cos(d*x + c)^2 + A*b*cos(d*x + c))*sqrt(b*cos(d*x + c))*sec(d*x + c)^4, x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))**(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**4,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} \left (b \cos \left (d x + c\right )\right )^{\frac{3}{2}} \sec \left (d x + c\right )^{4}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*cos(d*x+c))^(3/2)*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(b*cos(d*x + c))^(3/2)*sec(d*x + c)^4, x)